Implicit-Explicit Integral Deferred Correction Methods for Stiff Problems
نویسندگان
چکیده
منابع مشابه
Implications of the Choice of Predictors for Semi-implicit Picard Integral Deferred Correction Methods
High-order semi-implicit Picard integral deferred correction (SIPIDC) methods have previously been proposed for the time-integration of partial differential equations with two or more disparate time scales. The SIPIDC methods studied to date compute a high-order approximation by first computing a provisional solution with a first-order semi-implicit method and then using a similar semi-implicit...
متن کاملSemi-implicit Spectral Deferred Correction Methods for Ordinary Differential Equations∗
A semi-implicit formulation of the method of spectral deferred corrections (SISDC) for ordinary differential equations with both stiff and non-stiff terms is presented. Several modifications and variations to the original spectral deferred corrections method by Dutt, Greengard, and Rokhlin concerning the choice of integration points and the form of the correction iteration are presented. The st...
متن کاملSemi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations
In the recently developed Krylov deferred correction (KDC) methods for ordinary differential equation initial value problems [11], a Picard-type collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using a Newton-Krylov method. Existing analyses show that these KDC methods a...
متن کاملSemi-implicit Krylov deferred correction methods for differential algebraic equations
In the recently developed Krylov deferred correction (KDC) methods for differential algebraic equation initial value problems [33], a Picardtype collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using Newton-Krylov methods. KDC methods have the advantage that methods with...
متن کاملSemi-implicit Integral Deferred Correction Constructed with Additive Runge-kutta Methods
In this paper, we consider construct high order semi-implicit integrators using integral deferred correction (IDC) to solve stiff initial value problems. The general framework for the construction of these semi-implicit methods uses uniformly distributed nodes and additive RungeKutta (ARK) integrators as base schemes inside an IDC framework, which we refer to as IDC-ARK methods. We establish un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2018
ISSN: 1064-8275,1095-7197
DOI: 10.1137/16m1105232